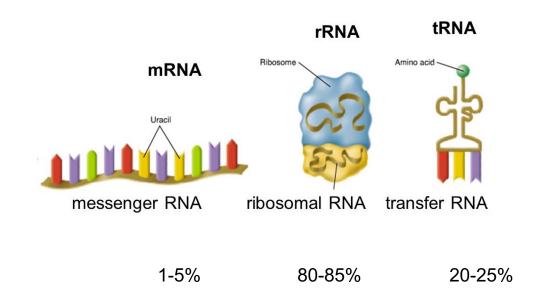
Cloning mouse pancreatic α-amylase cDNA into a mammalian expression plasmid



cDNA cloning: Experimental steps

- Isolation of total RNA (Lab 2)
- Reverse transcription (Lab 2)
 - oligo-dT primer anneals to polyA tail of mRNA
 - Reverse transcriptase will synthesize first-strand cDNA
- PCR amplification using first-strand cDNA as a template (Lab 3)
- Ligation of PCR amplicon (Amy2 coding sequence) into expression plasmid / Bacterial Transformation to select recombinant plasmids (Lab 4)

EPFL

Total RNA Composition

Introduction Lab2

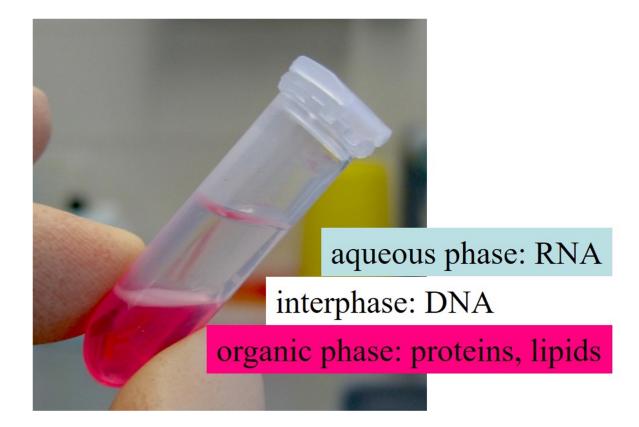
- 1. RNA isolation
- 2. Quality control
- 3. Reverse transcription (RT)

Working RNAse Free

RNAases present on skin etc degrade RNA!

- Clean benches with 70% ETOH
- Wear gloves
- Use filter tips
- Keep RNA on ice

Adenine
$$NH_2$$


$$O = P - OCH_2$$

EPFL

Total RNA Isolation

- Trizol extraction (prepared by us)
 - Guanidinium thiocyanate => Denatures proteins, including RNases, and preserves RNA integrity.
 - Phenol-chloroform extraction => RNA separates into the aqueous phase.
 - Video
- Purification on RNeasy spin column (prepared by you)
- You will isolate RNA from mouse tissue

Trizol Extraction

RNA isolation: RNeasy spin column

Use aqueous phase Trizol extract Selective binding of the RNA to a silica-based membrane.

Purification of RNAs > 200 nucleotides.

Safety: wear goggles

RNA Purity

NanoDrop Spectrophotometer

Assess purity of total RNA

Compare to control RNA

RNA Quality Control

- Concentration: how much?
- Purity: how clean?
- Integrity: how intact/ how much degraded?

Determination of RNA concentration

- Nucleic acids have an absorption maximum at at 260 nm
- The Beer-Lambert law A=Ecl
- Linear change in absorbance with concentration
- Spectrophotometric conversion for RNA:
 1.0 A260 unit = 40 μg/ml (1 cm path)

Chemical Purity of Nucleic Acids is Assessed by Absorbance Ratios

Absorption at 280 nm may be caused by proteins (aromatic amino acids) or phenol

A260/A280

DNA

1.7 - 1.8

- A260/A280

RNA

1.9 - 2.2

Absorption at 230 nm can be caused by guanidinium thiocyanate, other organic compounds or proteins.

- A260/A230

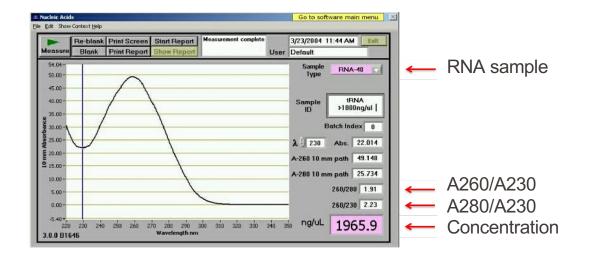
RNA and DNA

> 1.9

Introduction Lab2

NanoDrop Spectrophometer

- Small samples: 0.5 μl 2.0 μl
- No need for cuvettes or capillaries.
- With the arm open, a sample is pipetted directly onto the pedestal.
- After the arm is closed, a sample column is formed.
- The pedestal then moves to automatically adjust for an optimal path length (1 mm).
- When the measurement is complete, the surfaces are simply wiped with a lint-free lab wipe before going on to the next sample.



Typical NanoDrop Spectral Profile

RNA integrity

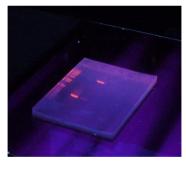
Agarose gel electrophoresis

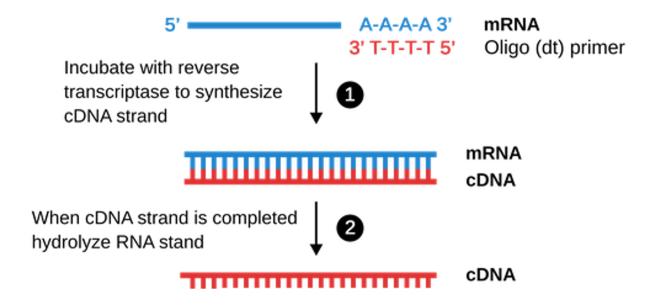
Assess integrity of ribosomal RNA bands of purified RNA

Compare to control RNA

Agarose Gel Electrophoresis

- How to run an agarose gel:
 - Wear gloves (GelRed dye)
 - Plug cables correctly (+/-)
 - Turn power ON after loading your sample
 - Watch samples migrate in the correct direction
 - Turn power OFF before taking out the gel




UV transilluminator

- The gel contains a fluorescent nucleic acid dye (GelRed)
- When illuminated with UV light the nucleic acids are visible
- Save the image with group number

Reverse Transcription (RT) Reaction

RT Key Reaction Components

- Template: total RNA from mouse pancreas (provided by us)
- Oligo-dT primer
- Reverse transcriptase: derived from Moloney Murine Leukemia Virus
- Deoxyribonucleoside triphosphates (dNTPs)

Control Reaction for RT

amplification (Lab 3)

Sample without reverse transcriptase (-RT)
 This control assesses the amount of DNA contamination present in an RNA preparation. Important control during PCR